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a b s t r a c t

Several finite elastic strain measures are evaluated for use in constitutive models of crys-
talline elasticity and elasto-plasticity. These include the Green material strain tensor, the
Eulerian material strain tensor, and the logarithmic material strain tensor, all of which
are referred to locally relaxed coordinates invariant under spatial rotations. New appli-
cations of logarithmic strain-based theory towards shock compression of aluminum, cop-
per, and magnesium single crystals and polycrystals are presented. Solutions to the planar
shock problem from previous work are summarized and compared with the present re-
sults. Consideration of these new results in conjunction with previous analysis for a num-
ber of differentmetals, ceramics, andminerals suggests that Eulerian strain-based theory is
most accurate formodeling the dynamic high-pressure response of ductilemetallic crystals
wherein ratios of elastic shear to bulk moduli tend to be relatively small, while logarithmic
strain-based theory is recommended for modeling shocks in ceramics and minerals with
larger ratios of effective elastic shear to bulk modulus.

Published by Elsevier Ltd.
1. Introduction

The shock response of solids is important in applica-
tions related to structural crashworthiness, defense (e.g.,
projectile–target interactions), and geophysics (e.g., ex-
plosive mining operations and hypervelocity collisions
of planetary rock masses) [1]. Accurate, efficient, stable,
and thermodynamically consistent models for nonlinear
anisotropic elasticity are required for proper mesoscale
modeling of crystalline solids subjected to impact or ballis-
tic loading. Nonlinear hyperelasticity addresses the ther-
modynamically reversible response component of solids
subjected to large deformation; classes of crystalline ma-
terials of interest include metals [2], ceramics and miner-
als [3], energeticmaterials [4], and electronicmaterials [5].

∗ Correspondence to: Adjunct Faculty, A. James Clark School of
Engineering, University of Maryland, College Park, USA.

E-mail addresses: john.d.clayton1.civ@mail.mil, jdclayt1@umd.edu.

http://dx.doi.org/10.1016/j.eml.2015.03.005
2352-4316/Published by Elsevier Ltd.
This Letter considers three particular nonlinear thermoe-
lasticitymodels–each based on a different finite strain ten-
sor referred to locally unstressedmaterial coordinates–and
their performance regarding depiction of shock compres-
sion of crystalline solids. The three strain measures are the
elastic Green–Lagrange strain E (often simply referred to
here as Green strain), Eulerian material strain D, and loga-
rithmic material strain e, all defined mathematically later
in the text.

Conventional Lagrangian formulations of nonlinear
elasticity for crystals [6,7] incorporate the elastic Green
strain tensor. However, benefits of Eulerian strain ten-
sors for isotropic materials were predicted [8] and demon-
strated for cubic crystals under hydrostatic stress [9].
Thermal effects were considered in [10] for cubic crystals,
and a theory for non-cubic crystals was initiated in [11].
A complete D-based continuum thermoelastic theory for
large deformation of crystals of arbitrary symmetry was
developed in [12]. Analytical solutions for homogeneous
deformations of ideal cubic crystals were studied over a
prescribed range of elastic coefficients; stress states and



114 J.D. Clayton / Extreme Mechanics Letters 3 (2015) 113–122
intrinsic stability measures were compared. For realistic
coefficients, Eulerian theory predicted more physically re-
alistic and stable behavior than Lagrangian theory under
large compression and shear. Analytical solutions for shock
compression of anisotropic single crystals were derived for
internal energy functions quartic in Lagrangian or Eulerian
strain and linear in entropy; results were analyzed for non-
metals quartz, sapphire, and diamond in [12] and metals
aluminum, copper, andmagnesium in [13]. Eulerian theory
was recently used to numericallymodel the viscoplastic re-
sponse of aluminum single crystals and textured polycrys-
tals in wave propagation simulated using the finite differ-
ence method [14], wherein Lagrangian theory was found
insufficient for modeling strong/overdriven elastic–plastic
shocks.

A complete e-based continuum thermoelastic theory
was analogously developed in [15] and applied to study
the shock response of the same three nonmetals. The the-
ory was extended to describe elastic–plastic response us-
ing amultiplicative decomposition of the deformation gra-
dient (formally given later in Eq. (2)), and solutions for
plastic shocks (involving slip, twinning, and/or shear frac-
tures) following an elastic precursor in rate independent
solids were derived [15]. Logarithmic theory delivered su-
perior accuracy to Lagrangian and Eulerian theories for
modeling shocks in single crystals of sapphire (X- and Z-
cut), quartz (Z-cut), and diamond (X-cut) [15]. Logarith-
mic theory incorporating third-order elastic constants was
also applied to analytically model the elastic–inelastic re-
sponse of isotropic polycrystalline titanium diboride ce-
ramic [16], including double yield and effects of static lat-
eral pre-stress.

The remainder of this Letter is organized as follows.
Kinematics and strain tensors are formally defined in Sec-
tion 2, along with three-dimensional forms of internal
energy functions. Specialization of the general theory to
shock loading and large volumetric deformation is re-
viewed in Section 3. Analytical solutions corresponding
to energy potentials associated with different strain ten-
sors are compared with each other, experimental data,
and atomic simulation data in Section 4, leading to sug-
gested/preferred potentials for use in various situations.
Conclusions follow in Section 5. Notation of continuum
mechanics is used: vectors and tensors in bold font, scalars
in italics, and summation over repeated indices (sub-
scripts) referred to Cartesian coordinates. As befitting the
brief style of a Letter, derivations that can be found in the
cited references are usually omitted.

2. General constitutive theory

At a material element with reference coordinates X
and spatial coordinates x, the deformation gradient F and
volume ratio J are

F(X) = ∂x/∂X,

FiJ(XK ) = ∂xi/∂XJ = δiJ + ∂ui/∂XJ;

J(X) = V/V0 = det F ;

(1)
where u is the particle displacement. For an elastic–plastic
material, where ‘‘plastic’’ refers here to any thermodynam-
ically irreversible mechanism such as dislocation glide, de-
formation twinning, fracture, void growth, or pore col-
lapse, the total deformation gradient is typically split into a
product of a thermoelastic term (superscript E) and a plas-
tic term (superscript P , and which can be further decom-
posed into a product of deformation mappings associated
with different physical mechanisms) [2–4,6,17]:

F = F EF P , FiJ = F E
iK F

P
KJ;

J = JE JP = det F E det F P .
(2)

The elastic Green material strain tensor (i.e., Green–
Lagrange strain) is defined as [6,7]

E =
1
2
(F ETF E

− 1), EIJ =
1
2
(F E

kIF
E
kJ − δIJ). (3)

Also considered here are theories incorporating the
elastic Eulerian material strain tensor [12–14]

D =
1
2
(1 − F E−1F E−T ), DIJ =

1
2
(δIJ − F E−1

Ik F E−1
Jk ) (4)

and the elastic material logarithmic strain tensor [15,16]

e = lnU E
=

1
2
ln(F ETF E) =

1
2
ln CE,

eIJ =
1
2
ln(F ETF E)IJ .

(5)

Complete presentations of thermodynamic theories can
be found in [12–16] and are too lengthy to reproduce in
entirety in this Letter. Several important relations are listed
next for reference. Local balance laws are, in the absence of
discontinuities, body forces, and heat conduction,

ρ0 = ρJ, ∇ · σ = ρẍ, U̇ = Jσ : (Ḟ F−1), (6)

with ρ0 and ρ reference and spatial mass densities, σ sym-
metric Cauchy stress, and U internal energy per reference
volume. Letting ξ denote an internal state variable linked
to evolution of microstructure (e.g., defects) and η the en-
tropy density, forms of internal energy functions are

U = Ū(E, η, ξ), U = Û(D, η, ξ),

U =
⌣
U (e, η, ξ).

(7)

Corresponding thermoelastic relationships for stress σ
and temperature θ follow as [12,15]

σ = JE−1F E(∂Ū/∂E)F ET ,

σ = JE−1F E−T (∂Û/∂D)F E−1,

σ = JE−1F E
[(∂

⌣
U/∂e) : (∂ ln CE/∂CE)]F ET

;

(8)

θ = ∂Ū/∂η, θ = ∂Û/∂η, θ = ∂
⌣
U/∂η. (9)

At fixed entropy and internal state variables, assuming
a stress-free reference configuration, andwritten explicitly
with elastic constants up to fourth order, internal energy
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functions per unit reference volume are expressed as the
Taylor polynomials

Ū(E) =
1
2!

CαβEαEβ +
1
3!

C̄αβγ EαEβEγ

+
1
4!

C̄αβγ δEαEβEγ Eδ + · · · , (10)

Û(D) =
1
2!

CαβDαDβ +
1
3!

ĈαβγDαDβDγ

+
1
4!

Ĉαβγ δDαDβDγDδ + · · · , (11)

⌣
U (e) =

1
2!

Cαβeαeβ +
1
3!

⌣
Cαβγ eαeβeγ

+
1
4!

⌣
Cαβγ δeαeβeγ eδ + · · · . (12)

Greek indices denote Voigt notation (e.g., α = 1,
2, . . . , 6). Elastic constant tensors of all orders have the
same symmetries, thoughmagnitudes of higher-order con-
stants differ among the three representations. Consistent
relationships among third-, and higher-order elastic con-
stants have been derived elsewhere for various symmetry
classes [9–16,18], allowing values of Lagrangian constants
of potential energy in (10) to be converted to Eulerian and
logarithmic analogs in (11) and (12) without the need for
further material characterization experiments. Isentropic
second-order elastic constants Cαβ are equal among all
three theoretical representations in (10)–(12).

It is emphasized that all theories considered in the
present paper are fully nonlinear; no considerations of nor
comparisons with the usual linear theory of elasticity are
included. Sources of nonlinearity are generally both geo-
metric, arising from definitions of finite elastic strain mea-
sures in (3)–(5) for a given value of F E , and constitutive,
arising from incorporation of nonzero higher-order elastic
constants (cubic and higher-order terms) in (10)–(12). The
nonlinear representations enable consideration of finite
deformations, of particular interest large volume changes
under compressive loading. However, when elastic dis-
placement gradient components and relevant higher-order
constants are sufficiently small in magnitude, results of all
three representations collapse to those of anisotropic lin-
ear elasticity.

Axial components of the three strain tensors are com-
pared for homogeneous spherical and uniaxial elastic
deformations in Fig. 1. The magnitude of the axial compo-
nent ofD increasesmuchmore rapidly than that of E under
compression, with e demonstrating trends intermediate
to the other strains. Internal energy, stress/pressure, and
bulk stiffness of crystals tend to increase rapidlywith com-
pression [19]. Therefore, Eulerian and logarithmic theories
would be expected to converge faster, with fewer higher-
order elastic constants needed, than Lagrangian theory, as
will be verified later in this Letter.

3. Shock compression

New application of logarithmic strain-based theory (e-
based theory) to shock compression of metals is presented
later in Section 4. These model predictions are thermoe-
lastic and strictly applicable only for very small volumes,
Fig. 1. Lagrangian (E11), logarithmic (e11), and Eulerian (D11) strain in
uniform deformation J = V/V0 . Spherical: F = J1/31; Uniaxial: F =

1 + (J − 1)e1 ⊗ e1 .

such as in atomic simulations [20,21] or in the immediate
vicinity of pinned defect cores [22], wherein plastic defor-
mation does not occur. Let X = X1 denote the direction
of propagation of a purely longitudinal, steady thermoe-
lastic shock wave of natural velocity D passing through
a material initially unstressed and at rest. Since the shock
is modeled as a jump discontinuity in axial particle veloc-
ity υ = ∂u(X, t)/∂t , the strain rate (velocity gradient) in
the shock front tends towards infinity. Axial shock stress
P is defined as positive in compression and is equal to the
negative of Cauchy stress component σ11. Solutions to this
planar thermoelastic shock problem in anisotropic crys-
talswere derived fully for Lagrangian and Eulerian theories
in [12] and for logarithmic theory in [15]; the procedure in-
volves simultaneous solution of Rankine–Hugoniot equa-
tions for conservation of mass, momentum, and energy:

D = υ/(1 − J), P = ρ0Dυ, U =
1
2
ρ0υ

2 (13)

along with consideration of internal energy functions (10),
(11), or (12) of order four in corresponding strain and ex-
tended to include entropy change1η via Grunëisen tensor
Γα:

Ū(E, η) =
1
2
CαβEαEβ +

1
6
C̄αβγ EαEβEγ

+
1
24

C̄αβγ δEαEβEγ Eδ + θ01η(1 − ΓαEα), (14)

Û(D, η) =
1
2
CαβDαDβ +

1
6
ĈαβγDαDβDγ

+
1
24

Ĉαβγ δDαDβDγDδ

+ θ01η(1 − ΓαDα), (15)

⌣
U (e, η) =

1
2
Cαβeαeβ +

1
6

⌣
Cαβγ eαeβeγ

+
1
24

⌣
Cαβγ δeαeβeγ eδ + θ01η(1 − Γαeα). (16)

The explicit analytical solutions for shock stress to order
three in each of the uniaxial scalar strain measures (E =

E11,D = D11, e = e11) derived in full elsewhere [12,13,15]
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are

P = −J∂Ū/∂E = −J[C11E +
1
2
C̄111E2

+
1
6
(C̄1111 − Aθ0Γ1)E3

] (Lagrangian), (17)

P = −J−3∂Û/∂D = −J−3
[C11D +

1
2
Ĉ111D2

+
1
6
(Ĉ1111 − Aθ0Γ1)D3

] (Eulerian), (18)

P = −J−1∂
⌣
U/∂e = −J−1

[C11e +
1
2

⌣
C 111e2

+
1
6
(

⌣
C 1111 − Aθ0Γ1)e3] (Logarithmic), (19)

where for uniaxial strain, with θ0 the ambient temperature
upstream from the shock:

J = (1 + 2E)1/2 = (1 − 2D)−1/2
= exp(e),

2θ0A = C̄111 + 3C11 = Ĉ111 − 9C11 =
⌣
C 111 − 3C11.

(20)

From (9) and (14)–(16), temperature in the shocked
state is, for each theoretical representation,

θ = θ0(1 − Γ1E) (Lagrangian);

θ = θ0(1 − Γ1D) (Eulerian);

θ = θ0(1 − Γ1e) (Logarithmic).
(21)

In these internal energy-based theories, effects of en-
tropy production on stress arise from the rightmost terms
proportional to A in each of (17)–(19), providing the in-
crease in shock stress 1P on the Hugoniot relative to that
along a corresponding isentrope. Temperature rise does
not explicitly enter (17)–(19), but its effects are implicit in
the thermodynamic framework. For example, consider Eu-
lerian theory with thermoelastic temperature rise 1θ =

θ − θ0 given by the second of (21); dissipative stress
increase relative to temperature rise then obeys 1P =

AD21θ/6. Also, noting that isothermal second-order con-
stants are related to isentropic constants via Cθ

αβ = Cαβ −

θ0c0ΓαΓβ with c0 specific heat at constant strain [6], isen-
tropic constants tend to exceed their isothermal counter-
parts, leading to larger P for adiabatic relative to isothermal
compression.

In laboratory scale specimens, yielding would com-
mence in many pure ductile metals at small compres-
sions at which effects of higher-order constants and
differences among predictions from (17)–(19) would be
negligible. However, nonlinear elastic effects on deviatoric
stress may still be important at larger compressions after
yielding, particularly for lower symmetry materials with
restricted slip planes/directions [13], and the nonlinear-
ity in pressure–volume response is important regardless of
shear strength, as will become clear later in the context of
results in Section 4.

Whenmaterial strength (i.e., maximum sustained devi-
atoric stress) is low relative to mean stress and can safely
be omitted, the response of metals to moderate shocks can
often be adequately approximated (p ≈ P) by an adiabatic
pressure–volume (p–J) equation of state (EOS) derived for
spherical compression, termed herein the hydrodynamic
Table 1
Single crystal and polycrystal properties [13] (θ0 = 295 K; Cαβ in GPa; ρ0
in g/cm3).

Property Al [100] Cu [100] Mg [a-axis] Mg [c-axis]

C11 107 166 59.4 61.6
C̄111 −1080 −1279 −664 −728
Ĉ111 203 715 49 12
⌣
C 111 −438 −283 −308 −358
C̄1111 25000 11900 8170 7380
Ĉ1111 10500 2000 1220 893
⌣
C 1111 15036 1200 1865 369
Γ1 2.17 1.97 1.52 1.52
B0 76 137 35.4 35.4
B′

0 4.42 5.48 3.90 3.90
ρ0 2.70 8.96 1.74 1.74

approximation. The EOS corresponding to each of (14)–
(16) truncated at order three in strain is [12,13,15]

p = −∂Ū/∂ J =
3
2
B0(J−1/3

− J1/3)

×


1 −

3
4
B′

0(J
2/3

− 1)


(Lagrangian), (22)

p = −∂Û/∂ J =
3
2
B0(J−7/3

− J−5/3)

×


1 +

3
4
(B′

0 − 4)(J−2/3
− 1)


(Eulerian), (23)

p = −∂
⌣
U/∂ J = −B0[(ln J)/J]

×


1 −

1
2
(B′

0 − 2) ln J


(Logarithmic), (24)

where B0 and B′

0 are isentropic bulk modulus and its pres-
sure derivative in the unstressed reference state. Eulerian
EOS (23) is equivalent to the Birch–Murnaghan EOS [9]. Ap-
pendix A gives requirements ensuring accuracy of this hy-
drodynamic approximation for shock loading.

4. Results and analysis

Thermoelastic and physical properties for aluminum
(Al), copper (Cu), and magnesium (Mg) are reported in Ta-
ble 1. Predictions for shock stress versus volume ratio are
made using the analytical solutions of (17), (18), and (19),
considering only pure mode directions of steady shock
propagation (i.e., a strictly longitudinal response, with no
transverse waves). Shock stress P normalized by second-
order isentropic elastic constant C11 is shown in Fig. 2(a)
for Al, Fig. 2(b) for Cu, Fig. 2(c) forMg shocked along the [a-
axis] and Fig. 2(d) for Mg shocked along the [c-axis]. Cubic
crystals Al and Cu are shocked along [100] directions.

Higher-order elastic constants for Eulerian and loga-
rithmic representations are converted from measured La-
grangian constants using formulae derived or presented
in [12,13,15,18] and listed in Appendix B. Elastic constants
of up to order four are considered in results labeled ‘‘4th
order’’. Results labeled ‘‘3rd order’’ and ‘‘2nd order’’ are
obtained, respectively, by setting fourth-order and both
third- and fourth-order elastic constants to zero in (17)–
(19). Results in Fig. 2 compare logarithmic and Eulerian
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a b

c d

Fig. 2. Analytical anisotropic thermoelastic solutions for axial stress in (a) shocked aluminum (Al) single crystal along [100] compared with atomic
simulation data [20], (b) shocked copper (Cu) single crystal along [100], (c) shocked magnesium (Mg) single crystal along a-axis, and (d) shocked Mg
single crystal along c-axis.
Table 2
Relative difference 1 (%) in shock stress P predicted by 3rd (Lag3, Log3, Eul3) and 2nd (Lag2, Log2, Eul2) order theories: Al and Cu.

V/V0 Aluminum [100] Copper [100]
Lag3 Log3 Eul3 Lag2 Log2 Eul2 Lag3 Log3 Eul3 Lag2 Log2 Eul2

0.96 −5.0 −3.8 −3.1 −23.1 −11.9 +1.1 −1.6 −0.2 −0.4 −15.8 −3.7 +9.3
0.92 −15.7 −13.9 −14.1 −48.2 −29.8 −5.0 −5.4 −0.8 −2.1 −31.6 −7.8 +19.9
0.88 −28.1 −28.2 −34.5 −71.2 −51.0 −19.8 −10.4 −1.8 −6.2 −46.5 −12.4 +31.5
Table 3
Relative difference 1 in shock stress P predicted by 3rd (Lag3, Log3, Eul3) and 2nd (Lag2, Log2, Eul2) order theories: Mg.

V/V0 Magnesium [a-axis] Magnesium [c-axis]
Lag3 Log3 Eul3 Lag2 Log2 Eul2 Lag3 Log3 Eul3 Lag2 Log2 Eul2

0.96 −2.9 −0.8 −0.6 −22.8 −10.9 1.2 −2.5 −0.2 −0.4 −23.4 −11.0 −0.0
0.92 −9.2 −3.0 −2.9 −44.7 −22.7 1.0 −7.9 −0.6 −2.0 −45.1 −22.5 −1.2
0.88 −16.8 −6.3 −7.6 −64.3 −35.0 −1.4 −14.5 −1.2 −5.2 −64.2 −33.0 −3.8
theories; different plots comparing Lagrangian and Eule-
rian theories can be found in [13]. All longitudinal higher-
order elastic constants (i.e., all third- and fourth-order con-
stants) are smaller in magnitude for Eulerian and logarith-
mic theory than Lagrangian theory for these metals, as can
be verified via examination of values in Table 1.

Stress predictions of 2nd and 3rd order models are usu-
ally closer to those of 4th order theory for Eulerian and log-
arithmic theory than for Lagrangian theory. Tables 2 and 3
list relative differences (%) of 2nd and 3rd order predictions
compared to 4th order predictions, computed as

1 = 2 · (2nd or 3rd order result − 4th order result)/
(2nd or 3rd order result + 4th order result). (25)

For each crystal type, such differences are almost al-
ways smaller in magnitude for Eulerian theory (Eul2, Eul3)
and logarithmic theory (Log2, Log3) than for Lagrangian
theory (Lag2, Lag3) at a given volume ratio and order of
approximation, i.e., order of Taylor polynomial used in in-
ternal energy functions (14)–(16). If 4th order results are
viewed as exact, then 1 can be interpreted as a measure
of error of the lower order predictions; however, the term
‘‘error’’ is avoided in the present context since even the
4th order predictionsmay be subject to inaccuracy relative
to ‘‘exact’’ polynomial representations containing up to an
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infinite number of terms or relative to experimental data
used for model validation.

These observations imply a faster converging series in
(19) or (18) than (17) as the number of higher-order con-
stants is increased and presumably greater accuracy of Eu-
lerian or logarithmic theory than Lagrangian theory when
the samenumber of constants (i.e., the sameorder of Taylor
polynomial) is used in each representation. Eulerian and
logarithmic theories trend towards comparable accuracy,
with one theory or the other possibly more accurate for a
given metal or order of approximation. For Al, as shown
in Fig. 2(a), the analytical solution incorporating 4th order
Eulerian theory best matches atomic predictions [20]. For
example, at a compression ratio of J = V/V0 = 0.923,
the difference in 4th order Eulerian theory versus atomic
simulation is −1.4%, compared to −7.4% for 4th order La-
grangian theory and −2.2% for 4th order logarithmic the-
ory.

Comparison with results of empirical potential-based
molecular dynamics (MD) calculations [20]may be viewed
with some reservation sinceMD results are subject to their
own possible sources of inaccuracy, e.g., uncertainty in as-
sumed functional forms and parameters of the potentials
and precision of numerical solutions. However, results of
the Winey–Kubota–Gupta (WKG) potential considered in
Fig. 2(a), first developed in [21], were reported in [20] to be
more suitable than those of several other embedded atom-
type potentials formodeling the uniaxial shock response of
defect-free aluminum single crystals and in [21] more ac-
curate formodeling thermoelasticity in Al over awide tem-
perature range. Furthermore, later in this paper, predic-
tions of the nonlinear continuummodels are compared di-
rectly with data from shock experiments and density func-
tional theory (DFT) calculations (e.g., labeled as ‘‘ab ini-
tio’’, ‘‘first principles’’, ‘‘electronic structure’’ or ‘‘quantum-
MD’’), the latter typically viewed as less empirical than
classical MD calculations, though again various assump-
tions and sources of inaccuracy are involved in solution of
the governing quantum-mechanical relations [7].

Predicted shock stress P need not always increase
(or decrease) as the order of approximation used in any
of (17)–(19) is increased. Under uniaxial compression,
finite strain measures E,D, and e are all negative in
sign, leading to compressive (positive) contributions to P
from positive second-order constants, tensile (negative)
contributions to P from positive third-order constants, and
compressive (positive) contributions to P from positive
fourth-order constants. Signs of these contributions are
reversed when signs of elastic constants are negative. For
materials and properties of Table 1, all second- and fourth-
order elastic constants are positive; third-order constants
are all negative for Lagrangian and logarithmic theory and
are all positive for Eulerian theory. As a result, predictions
for logarithmic theory in Fig. 2 increasemonotonicallywith
increasing order, while predictions of Eulerian theory do
not, with the 3rd order Eulerian prediction of P smaller
than that of the 2nd order Eulerian prediction. As a
general implicationwith regard to arbitrarymaterials, both
the sign and magnitude of higher-order elastic constants
should be considered when interpreting their importance
in the context of stress predictions.
a

b

c

Fig. 3. Analytical solutions for polycrystalline (a) aluminum, (b) copper,
and (c)magnesium in the hydrodynamic limit and experimental data [23].

Removing prior stated restrictions to defect-free or
small volumes of single crystals, predictions of each third-
order EOS in (22)–(24) are compared with polycrystalline
shock compression data compiled in [23] for Al in Fig. 3(a),
Cu in Fig. 3(b), and Mg in Fig. 3(c). Compressibility proper-
ties of Table 1 used in these predictions are obtained from
ultrasonic experiments [24] and are not fit to the shock
data.

Individual references fromwhich experimental data are
complied include [25–27] for Al, [25,28] for Cu, and [26] for
Mg. Experimental methods, as discussed in detail in [25–
29], involve measurements of shock wave velocity and in
some cases free surface velocity for a specimen subjected
to a planar shock generated by detonation in a high explo-
sive system. Maximum uncertainties in volume change at
fixed Hugoniot stresses as reported in these works range
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from ±0.5% to ±2% [25–29]. Error bars on p/B0 at fixed V
are reasonably translated to ±3% in Fig. 3.

Relevance of the hydrodynamic assumptions detailed in
Appendix A follows from the relatively low dynamic yield
strength Y of these high purity metals, with values on the
order of tens to several hundred MPa for dislocation glide
in Al [14,18] and Cu [18,29] and for slip or twinning in
Mg [30–32]. At very high rates, although Y may increase
with pressure or decrease with thermal softening and
shear localization, it follows that for V/V0 < 0.95, p/B0 >
0.05 in Fig. 3 and Y/B0 ≈ O(10−3), leading to Y/p <
0.02 ≪ 1 for each metal in these regimes of interest. The
metallic polycrystals are effectively isotropic and plasti-
cally incompressible (i.e., non-porous). Hydrodynamic ap-
proximations were also found accurate for shocked Al and
Cu in other works [18,29,33].

In each part of Fig. 3, Eulerian theory is most accurate,
followed by logarithmic theory and then Lagrangian
theory, with the latter much too compliant. Because
Eulerian theory appears superior for modeling spherical
compression and at least equally valid as logarithmic
theory for modeling uniaxial strain compression, Eulerian
theory is herein deemedpreferable overall for representing
the shock response of ductile metals.

As demonstrated in Appendix C, Eulerian theory also
compares favorably with DFT results for static isothermal
compression of Al, Cu, and Mg, especially with regard to
relative accuracy of lower-order EOS predictions. Future
numerical studies should thus consider applying Eulerian
theory in finite element or finite difference simulations
of the response of ductile metals, offering potential
improvement over prior implementations incorporating
Lagrangian theory [34–36].

On the other hand, recent work [15] found that loga-
rithmic theory, while more computationally cumbersome
than Eulerian theory, more accurately captures the shock
response of ceramic crystals sapphire (α-Al2O3), diamond
(C), and quartz (α-SiO2), requiring fewer higher-order elas-
tic constants to attain close agreement with experimental
plate impact data. As shown in Table 4, these nonmetals
have a large ratio of effective shear (G0) to bulk modulus
compared to metals, characteristic of the trend that G0/B0
tends to increase with brittleness in pure substances [37–
39]. This correlation between plastic malleability and de-
creasing G0/B0 = 3(1 − 2ν)/(2 + 2ν), first proposed
by Pugh [37], is explained in terms of atomic structure
and bonding in [38] and verified in the context of inden-
tation hardness in [39]. Generally, resistance to bending of
atomic bonds is reflected by the shear modulus, and re-
sistance to stretching or compression of atomic bonds by
the bulk modulus [38]. Second-order elastic constants can
be related to harmonic interatomic forces, whereas higher-
order constants depend on anharmonicity [40]. Future nu-
merical studies of deformation of rock such as granite [41]
(silicate minerals) should benefit from use of logarithmic
rather than Lagrangian nonlinear elasticity.

Since the nonmetals considered in Table 4 tend to have
a rather large Hugoniot Elastic Limit (HEL) (e.g., not oc-
curring until up to ≈10% compression) and may demon-
strate significant shear strength when shocked above their
Table 4
Ratio of ambient Voigt-averaged shear modulus to bulk modulus [13,15].

Cu Al Mg α-Al2O3 C α-SiO2

G0/B0 0.34 0.35 0.53 0.65 1.22 1.27

HEL [12], use of a pressure–volume EOS alone is insuffi-
cient for calculation of axial shock stress. However, suit-
ability of logarithmic EOS (24) for representing the hydro-
static pressure–volume response has been verified for alu-
mina, diamond, and quartz in [15]. Table 5 summarizes
loading conditions, materials, and model performance
studied in the present work (*) as well as results in [12,
13,15]. In summary, Eulerian nonlinear theory is recom-
mended formodeling the response of ductilemetals, while
logarithmic theory is recommended formodeling ceramics
and minerals with larger ratios of shear to bulk stiffness.

New contributions of the present paper are clarified
as follows. Complete thermomechanical theories incorpo-
rating Eulerian and logarithmic strain measures were for-
malized in prior work [12–15]; the present paper contains
new results and comparisons of applications of such theo-
ries for three metals (Al, Cu, and Mg) subjected to uniaxial
shock compression (single crystals) and volumetric com-
pression (polycrystals). In particular, predictions of Eule-
rian and logarithmic theories for thesemetals had not been
compared previously with respect to order of representa-
tion, experimental data, or atomic simulation data (neither
MD nor DFT). Such new comparisons, when viewed in con-
junction with elastic constants listed in Table 4 and prior
results listed in Table 5, have enabled discovery of a new
inverse correlation between Pugh’s ductility ratio [27] and
suitability of Eulerian versus logarithmic theory for mod-
eling shock compression processes, with the former pre-
ferred for lower values of the ratio G0/B0.

5. Conclusions

Constitutive theories and analytical solutions for ther-
moelastic compression relevant to shock loading (extreme
strain rates and pressures) have been presented. Theories
consider Taylor-type polynomial representations of inter-
nal energy density in one of three finite strain measures
referred to unstressed material coordinates: Green strain,
Eulerian strain, or logarithmic strain. The present results,
newly examined in conjunction with prior work, imply
that Eulerian theory should offer the greatest accuracy (at
fixed order of Taylor polynomial) for modeling the shock
response of typical ductile metals. In contrast, logarithmic
theory is implied as most accurate for representation of
the shock response of more brittle ceramics and minerals
characterized by a relatively larger ratio of effective elastic
shear modulus to bulk modulus in the initial state.

Appendix A. Hydrodynamic approximation

For the hydrodynamic approximation invoked implic-
itly in application of EOS calculations to shock response,



120 J.D. Clayton / Extreme Mechanics Letters 3 (2015) 113–122
Table 5
Summary of present (*) and prior research results: finite strain model evaluations.

Loading Protocol Material Recommended theory Remarks Ref.

Hydrostatic compression Ideal cubic, B′

0 = 4 Eulerian Eulerian more accurate p–V curves [12]
Uniaxial compression Ideal cubic, B′

0 = 4 Eulerian Eulerian more accurate and stable [12]
Simple shear Ideal cubic, B′

0 = 4 Eulerian Eulerian more accurate and stable [12]
Shock compression Sapphire (Al2O3) Logarithmic Logarithmic more accurate overall [15]
Shock compression Diamond (C) Logarithmic Logarithmic more accurate overall [15]
Shock compression α-Quartz (SiO2) Logarithmic Logarithmic more accurate (Z-cut) [12,15]
Shock compression Aluminum (Al) Eulerian Eulerian best fit to atomic data [13, *]
Shock compression Copper (Cu) Eulerian Eulerian faster convergence [13, *]
Shock compression Magnesium (Mg) Eulerian Eulerian faster convergence [13, *]
Shock compression Al polycrystal Eulerian Eulerian more accurate [*]
Shock compression Cu polycrystal Eulerian Eulerian more accurate [*]
Shock compression Mg polycrystal Eulerian Eulerian more accurate [*]
deviatoric stresses are assumed negligible relative to hy-
drostatic stress:

σ ≈ −p1 ⇒ σ11 ≈ σ22 ≈ σ33 ≈ −p
⇒ P = −σ11 ≈ p. (A.1)

Contributions from stress to internal energy in the third
of (6) and (13) arise only from pressure:

U̇ = Jσ : ∇υ = −Jp∇ · υ = −pJ̇,
p = −∂U/∂ J = −V0∂U/∂V , (A.2)

where plastic volume change has been assumed negligible
in the second of (A.2) such that J = JE . Total deformation
need not be spherical in (A.2), but only volume changes
perform mechanical work. Use of (A.1), (A.2) and (B.3) in
(14)–(16) yields the EOS representations in (22)–(24). Use
of (9) in (14)–(16) with 3Γ0 = tr0 yields the temperature
rise resulting from a volume change:

θ = θ0


1 +

3
2
Γ0(1 − J2/3)


(Lagrangian);

θ = θ0


1 +

3
2
Γ0(J−2/3

− 1)


(Eulerian);

θ = θ0[1 − Γ0 ln J] (Logarithmic).

(A.3)

The followingmodeling assumptions are inherent in the
above derivations and the current application of (22)–(24)
to describe planar shock compression processes in ductile
metals:
• Deviatoric stress components are negligible relative to

pressure; since such components are on the order of
dynamic yield stress Y for metals [29], this translates
to Y/p ≪ 1;

• Entropy contributions to U can be adequately repre-
sented by rightmost linear terms in (14)–(16); this re-
quires that magnitudes of entropy increases across the
shock are modest, which is in accord with the first ap-
proximation above since plastic work contributions to
entropy rise are correspondingly small when deviatoric
stresses are sufficiently small;

• Other possible sources of internal energy change such
as resulting from heat conduction, defect generation
(ξ ), and plastic volume change (JP ) are negligible; the
first is in accord with usual adiabatic assumptions
inherent in (6) and (13), the last in accord with usual
kinematic descriptions that plastic deformation due to
slip and twinning are isochoric;
• The material possesses cubic or isotropic elastic sym-
metry for (B.3) to hold, with isotropy applicable to poly-
crystalline metallic samples with many randomly ori-
ented grains;

• Contributions of fourth- and higher-order in elastic
strain to U (and thus orders three and higher to P) can
be omitted, which in turn leads to omissions of higher-
order derivatives such as B′′

0 and A in each EOS in (22)–
(24). Adequacy of this truncation can only be judged via
accuracy of predictions of P or p, e.g., with experimental
data.

Only the first of the above five points is mandatory for
any general ‘‘hydrodynamic theory’’ that neglects material
rigidity [25].

Appendix B. Higher-order elastic constants

Relationships among higher-order elastic constants en-
tering Lagrangian, Eulerian, and logarithmic representa-
tions have been derived in several ways, including match-
ing terms of strain energy potentials of equivalent pow-
ers [11,18], matching of tangent elastic moduli [12], and
use of known formulae for derivatives of proper symmetric
fourth-order tensor functions [42]. Consistent results from
all methods of derivation for third-order longitudinal con-
stants for a stress-free reference configuration are [11–13,
18,42]

C̄111 = Ĉ111 − 12C11 =
⌣
C 111 − 6C11. (B.1)

For fourth-order longitudinal elastic constants [13,18],

C̄1111 = Ĉ111 + 18C̄111 + 318C11

=
⌣
C 1111 − 12C̄111 − 28C11. (B.2)

The first pressure derivative of the bulk modulus at the
reference state, for crystals of cubic or isotropic symmetry,
with 3B0 = C11 + 2C12 obeys [6,12,13,15,16]

B′

0 = −


1
9
C̄111 +

2
3
C̄112 +

2
9
C̄123

 
B0

= −


1
9
Ĉ111 +

2
3
Ĉ112 +

2
9
Ĉ123

 
B0 + 4

= −


1
9

⌣
C 111 +

2
3

⌣
C 112 +

2
9

⌣
C 123

 
B0 + 2. (B.3)
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c

Fig. 4. Analytical EOS solutions and DFT data [43–45] for pure single
crystalline (a) aluminum, (b) copper (c) magnesium.

Appendix C. Comparison with static DFT pressure–
volume data

Predictions of each EOS in (22)–(24) are compared
with isothermal compression data obtained from DFT
calculations reported in [43–45] for pressures up to
100 GPa. Results for Al and Cu (FCC phases) correspond to
room temperature (293 K) [43,44]; for Mg (HCP phase) to
0 K [45]. For proper comparison, isothermal values of bulk
modulus and its pressure derivative as reported from the
DFT works for each type of perfect single crystal are used
in each EOS rather than isentropic polycrystalline values
given previously in Table 1. Specifically, continuum EOS
predictions labeled ‘‘3rd order’’ invoke values of B0 and B′

0
shown in the inset of each part of Fig. 4. Continuum EOS
predictions labeled ‘‘2nd order’’ correspond to omission, in
each EOS, of terms involving third-order elastic constants
in (B.3), implying values of zero, two, and four forB′

0 in (22),
(24), and (23), respectively, noting, however, that (B.3)
does not strictly apply for single crystalMgwith hexagonal
symmetry.

As shown in Fig. 4, 3rd order Eulerian and logarithmic
theories are of comparable accuracy relative to DFT data
for Al, Cu, and Mg, with 3rd order Lagrangian theory
less accurate (e.g., too compliant) at volume ratios J
less than ≈0.85. Second-order logarithmic theory is too
compliant for each material at volume ratios less than
≈0.90, and 2nd order Lagrangian theory is even more
so, with the lowest relative accuracy among the three
theories for the present application. However, 2nd order
Eulerian theory is of comparable accuracy to 3rd order
Eulerian and to 3rd order logarithmic theory for Al and
Mg (Fig. 4(a) and (c)) and is more accurate than the two
other 2nd order continuum elasticity predictions for Cu
(Fig. 4(b)). In summary, Fig. 4 further supports the present
recommendation for preferred use of Eulerian elasticity for
modeling the high pressure response of ductile metals.
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